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Masked b-, g- and d-lithium ester enolates: useful reagents in
organic synthesis†
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Abstract—The reaction of v-chloro orthoesters 1 with lithium and a catalytic amount of 4,4%-di-tert-butylbiphenyl (DTBB, 5%
molar) in the presence of different electrophiles [ButCHO, PhCHO, (CH2)5CO, Et2CO, PhCOMe, PhCH�NPh, Me3SiCl] in THF
at −78°C leads, after hydrolysis and acid-catalysed methanolysis, to functionalised methyl esters 2. In the case of chlorotrimethyl-
silane, hydroxyethyl esters 2% are isolated. The reaction is also applied to bicyclic orthoesters 3: whereas b-chloro derivatives and
carbonyl compounds gives directly g-lactones 4 after hydrolysis, the corresponding g-chloro derivative affords the expected methyl
esters after methanolysis. © 2001 Elsevier Science Ltd. All rights reserved.

Normal metal enolates I (a-enolates) are important
intermediates in synthetic organic chemistry mainly in
reactions with carbonyl compounds, which afford
aldol-type products having 1,3-functionality.1 However,
higher-order metal enolates II (b-, g-, d-,… enolates)
are far more difficult to use because they have a ten-
dency to decompose spontaneously to give metal
cycloalcoholates III. Intermediates of the type II would
be interesting from a synthetic point of view because
reacting with carbonyl compounds as electrophiles they
could generate 1,4-, 1,5-, 1,6-,… functionality (1,4- and
1,6-difunctionalised compounds being ‘umpolung’
products2), which is not easily available using conven-
tional methodologies. Among different possibilities
concerning either the metal or n in synthons of the type
II, lithium derivatives (Met=Li) and homoenolates (b-
enolates: n=1) are the most studied intermediates
described in the literature.3 In general, the methodolo-
gies involving lithium homoenolates use either pro-
tected carbonyl compounds4 or functionalised
allyllithium systems3b and they are prepared by depro-
tonation,3b chlorine–lithium exchange4,5 or tin–lithium
transmetallation.6 Very few reports can be found in the
literature for g- or d-enolates derived from carbonyl

compounds, being generated in all cases by chlorine–
lithium exchange.7

In the last few years we have been using an arene-
catalysed lithiation8–11 for the preparation of very reac-
tive organolithium compounds under very mild reaction
conditions: this methodology allowed us to develop
new procedures for preparing organolithium com-
pounds from non-halogenated materials,12 function-
alised organolithium compounds13 from chlorinated
materials14 or heterocyclic precursors,15 and polylithium
synthons.16 In this paper, we apply the mentioned
methodology, arene-catalysed lithiation, for the genera-
tion of masked high order (b-, g- and d-) ester enolates
by chlorine–lithium exchange.

The reaction of compounds 1 with an excess of lithium
powder (1:5 molar ratio) and a catalytic amount of
4,4%-di-tert-butylbiphenyl (DTBB, 1:0.1 molar ratio, 5%
molar) in the presence of different electrophiles [E=
ButCHO, PhCHO, (CH2)5CO, Et2CO, PhCOMe,
PhCH�NPh, Me3SiCl] (Barbier-type conditions17) in
THF at −78°C for 30 min led, after hydrolysis with
phosphate buffer (pH:7) and final p-toluenesulfonic
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Table 1. Preparation of compounds 2 from chloro orthoesters 1

Entry Starting material Electrophile E Product 2a

No. n X Yield (%)b Rf
c

ButCHO 2aa 31 ButCHOH1a 58 0.31
2 1a PhCHO 2ab 3 PhCHOH 63 (54)d (47)e 0.20

(CH2)5CO3 2ac1a 3 (CH2)5COH 59 0.29
Et2CO 2ad 31a Et2COH4 51 0.24

1a5 PhCOMe 2ae 3 PhC(OH)Me 52 0.23
PhCH�NPh 2af 36 PhCHNHPh1a 57 0.46
Me3SiCl 2%agf 31a Me3Si7 40 0.25

1b8 ButCHO 2ba 4 ButCHOH 62 0.28
PhCHO 2bb 4 PhCHOH9 661b 0.24
(CH2)5CO 2bc 41b (CH2)5COH10 56 0.25

1b11 Et2CO 2bd 4 Et2COH 52 0.24
PhCOMe 2be 4 PhC(OH)Me 4912 0.181b
PhCH�NPh 2bf 41b PhCHNHPh13 54 0.49

14 Me3SiCl1b 2%bgf 4 Me3Si 47 0.28

a All compounds 2 were ]95% pure (GLC and/or 300 MHz 1H NMR) and were fully characterised by spectroscopic means (IR, 1H and 13C
NMR, and MS).

b Isolated yield after column chromatography (silica gel, hexane/ethyl acetate) based on the starting chloro orthoester 1.
c Silica gel, hexane/ethyl acetate: 5/1.
d Yield corresponding to the reaction at 0°C.
e Yield corresponding to the two-step reaction.
f The corresponding hydroxyethyl ester 2% was isolated (see text).

Scheme 1. (i) Li, DTBB (5% molar), E=ButCHO, PhCHO, (CH2)5CO, Et2CO, PhCOMe, PhCH�NPh, Me3SiCl, THF, −78°C,
30 min; (ii) phosphate buffer (pH:7), −78 to 20°C, ca. 15 min; (iii) MeOH, PTSA (cat.), 20°C, overnight.

acid (PTSA)-catalysed methanolysis, to the correspond-
ing functionalised methyl esters 218 (Scheme 1 and
Table 1). When the same process was carried out at 0°C
or in a two-step reaction (Grignard-type conditions),
lower yields were obtained (Table 1, entry 2 and foot-
notes d and e, respectively). On the other hand, a
different result was observed when using chloro-
trimethylsilane: in this case silylated hydroxyethylesters
2% were the only reaction products isolated (Table 1,
entries 7 and 14, and footnote f).

From a mechanistic point of view, intermediates IV and
V are probably involved in the process before the last
tandem hydrolysis–methanolysis treatment. The gener-
ation of compounds 2% can be explained by the an-
chimeric assistance of the silicon atom in the hydrolysis
step through the intermediate VI.

Starting materials 1 were prepared in 70–80% yield
from the corresponding v-chloronitriles by an acid-
catalysed methanolysis followed by ketalysation with
ethyleneglycol.19

The application of the reaction shown in Scheme 1
to the corresponding b-derivatives (1, n=2) was not
possible because we could not prepare the starting
material in a pure form following the same methodol-
ogy: a ca. 1:1 inseparable mixture of the expected
product and the corresponding a,b-unsaturated or-
thoester (resulting from a dehydrochlorination process)
was obtained.

In order to overcome the former problem, the bicyclic
orthoester 3a was prepared and submitted to the same
reaction conditions as for compounds 1 [E=R1R2CO:
ButCHO, PhCHO, Et2CO, (CH2)5CO, PhCOMe]. After
controlled hydrolysis and final treatment with a cata-

Scheme 2. (i) Li, DTBB (5% molar), R1R2CO=ButCHO,
PhCHO, (CH2)5CO, Et2CO, PhCOMe, THF, −78°C, 30 min;
(ii) phosphate buffer (pH:7), −78 to 20°C, ca. 15 min; (iii)
PTSA (cat.), 20°C, overnight.
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Table 2. Preparation of compounds 4 from chloro orthoester 3a

Product 4aCarbonyl compound (E)Entry

No. R1 R2 Yield (%)b Rf
c

4a But1 HButCHO 45 0.37
2 PhCHO 4b Ph H 43 (<5)d 0.36

(CH2)5CO3 4c (CH2)5 39 0.48
4d Et EtEt2CO 384 0.39
4e5 PhPhCOMe Me 37 0.35

a All compounds 2 were ]96% pure (GLC and/or 300 MHz 1H NMR) and were fully characterised by spectroscopic means (IR, 1H and 13C
NMR, and MS).

b Isolated yield after column chromatography (silica gel, hexane/ethyl acetate) based on the starting chloro orthoester 3a.
c Silica gel, hexane/ethyl acetate: 9/1.
d Yield corresponding to the reaction at 0°C.

lytic amount of PTSA, the corresponding g-lactones 4
were obtained (Scheme 2 and Table 3). For compound
3a it is better not to perform the methanolysis in the
last step of the process in order to avoid the generation
of a mixture of the lactone 4 and the corresponding
methyl ester. In the case of performing the reaction at
higher temperature (0°C), lower yields are obtained
(Table 2, entry 2 and footnote d).

Of course, the process described in Scheme 2 can be
applied to the corresponding g-derivatives. Thus, when
compound 3b was allowed to react under the conditions
shown in Scheme 1, but at 0°C, the expected com-
pounds 2 were isolated (Scheme 3 and Table 3). In this
case, the reaction at lower temperature (−78°C)
afforded poorer yield (Table 3, entry 2 and footnote d).
The participation of intermediates VII and VIII was
demonstrated by performing the corresponding
deuterolysis with deuterium oxide instead of the hydrol-
ysis: deuterated compound 5 was isolated in 87% yield
and 85% deuterium incorporation.

Starting materials 3 were prepared by successive treat-
ment of the corresponding v-chloro acyl chlorides with

3-hydroxymethyl-3-methyloxetane and boron trifl-
uoride etherate.20

Finally, we can conclude that the methodology de-
scribed in this paper is a reasonable entry to b-, g-, and
d-lithio carboxylic acid synthons by DTBB-catalysed
chlorine–lithium exchange. The reaction of these inter-
mediates with different electrophiles, mainly carbonyl

compounds, allows the remote functionalisation of car-
boxylic acids.

Scheme 3. (i) Li, DTBB (5% molar), E=ButCHO, PhCHO,
PhCOMe, THF, 0°C, 30 min; (ii) phosphate buffer (pH:7),
0 to 20°C, ca. 15 min; (iii) MeOH, PTSA (cat.), 20°C,
overnight.

Table 3. Preparation of compounds 2 from chloro orthoester 3b

Product 2aEntry Carbonyl compound (E)

Yield (%)b Rf
cNo. X

38ButCHOH 0.312aa1 ButCHO
PhCHOH 41 (30)d (37)e2 PhCHO 2ab 0.20

0.23373 PhCOMe 2ae PhC(OH)Me

a All compounds 2 were ]95% pure (GLC and/or 300 MHz 1H NMR) and were fully characterised by spectroscopic means (IR, 1H and 13C
NMR, and MS).

b Isolated yield after column chromatography (silica gel, hexane/ethyl acetate) based on the starting chloro orthoester 3b.
c Silica gel, hexane/ethyl acetate: 5/1.
d Yield corresponding to the reaction at −78°C.
e Yield corresponding to the two-step process.
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